Transaction Details:

Hash fb9aa8715215b76e59200e6ef4a12d8013dcacb57d76b1b4823538740136d12b
Blockhash 61741b49054513568fc1454589c715aa375c614589ff7661b154fc2e1421c9a2
Blocktime 2020-05-07 00:31
Confirmations 123032

Inputs

Index Previous Output Address
0 9245b71351c5231d136494a4dbd0dd5d18e8e247c5da0a9286ef2febe294dba1:10 b'2QTa5N4aeSrCB2MLoPdPF4AsTjstJgcLTnd'

Outputs

Index Redeemed in Address Amount
0 Not yet redeemed N/A 0 CBL
1 03ed2c5986f6a622ea867a1821abd69f47c3569d21d0ade2e8d966ed66fa226e 2QTa5N4aeSrCB2MLoPdPF4AsTjstJgcLTnd 49.48861097 CBL
{
"txid": fb9aa8715215b76e59200e6ef4a12d8013dcacb57d76b1b4823538740136d12b,
"time": 1588811488,
"blocktime": 1588811488,
"blockhash": 61741b49054513568fc1454589c715aa375c614589ff7661b154fc2e1421c9a2,
"confirmations": 123032,
"vin ": [
{
"txid": 9245b71351c5231d136494a4dbd0dd5d18e8e247c5da0a9286ef2febe294dba1
"vout": 10
"scriptSig": {'asm': '3045022100c2357a372050330583b985522368b4a846752759a1774e717ac265c8f77e7ece022000b7860a53905ffdb8330f837c8995843edc31ec939d3153d892716e5728597301 03f4157f5bbcf4594cb612f878fa622f4fa99713ebd638179751679d259fb49e38', 'hex': '483045022100c2357a372050330583b985522368b4a846752759a1774e717ac265c8f77e7ece022000b7860a53905ffdb8330f837c8995843edc31ec939d3153d892716e57285973012103f4157f5bbcf4594cb612f878fa622f4fa99713ebd638179751679d259fb49e38'}
"sequence": 4294967295
}
],
"vout ": [
{
"value": 0
"n": 0
"scriptPubKey": {
"asm": 73706b65164ff70a0a0153ccf31bbaf3f020c19d OP_DROP 73706b6b43434e32773450484e4231574c OP_DROP 73706b6b4354436b59506a4673336b4738 OP_DROP 73706b6b4344377a363947474e46374c42 OP_DROP 73706b6b4352566a414634337439614534 OP_DROP 73706b6602 OP_DROP OP_RETURN 7b69057469746c65536950612067656e6572616c697a656420617070726f61636820746f20736f696c20737472656e6774682070726564696374696f6e2077697468206d616368696e65206c6561726e696e67206d6574686f64736907746f70686173685369403837653530633531343530663437333935613432373339383633633232663133633631303133386465333863383038376135623939383131316635343839653269046d6574615b7b6906736368656d6153690a736368656d612e6f726769096d65646961747970655369136170706c69636174696f6e2f6c642b6a736f6e6904646174617b690840636f6e74657874536912687474703a2f2f736368656d612e6f72672f690540747970655369105363686f6c61726c7941727469636c656908656e636f64696e675b7b245323690369054074797065690b4d656469614f626a656374690a636f6e74656e7455726c694d687474703a2f2f706466732e73656d616e7469637363686f6c61722e6f72672f656666642f6339626362373965613737633164353736393034376530646131316135383231326236302e706466690e656e636f64696e67466f726d6174690f6170706c69636174696f6e2f7064665d690567656e72655369067265706f7274690a6964656e7469666965725b247b236902245323690369054074797065690d50726f706572747956616c7565690a70726f706572747949446903444f49690576616c7565691231302e32313233362f616461343634373236245323690369054074797065690d50726f706572747956616c7565690a70726f70657274794944690449534343690576616c7565693743434e32773450484e4231574c2d4354436b59506a4673336b47382d4344377a363947474e46374c422d4352566a41463433743961453469046e616d65536950412047656e6572616c697a656420417070726f61636820746f20536f696c20537472656e6774682050726564696374696f6e2057697468204d616368696e65204c6561726e696e67204d6574686f647369097075626c69736865727b6905407479706553690c4f7267616e697a6174696f6e69046e616d65536924446566656e736520546563686e6963616c20496e666f726d6174696f6e2043656e7465727d690d646174655075626c697368656453690a323030362d30372d30316906617574686f725b7b69054074797065536906506572736f6e69046e616d6553690e5065746572204d2e2053656d656e7d5d7d7d5d7d
"hex": 1473706b65164ff70a0a0153ccf31bbaf3f020c19d751173706b6b43434e32773450484e4231574c751173706b6b4354436b59506a4673336b4738751173706b6b4344377a363947474e46374c42751173706b6b4352566a414634337439614534750573706b6602756a4d99037b69057469746c65536950612067656e6572616c697a656420617070726f61636820746f20736f696c20737472656e6774682070726564696374696f6e2077697468206d616368696e65206c6561726e696e67206d6574686f64736907746f70686173685369403837653530633531343530663437333935613432373339383633633232663133633631303133386465333863383038376135623939383131316635343839653269046d6574615b7b6906736368656d6153690a736368656d612e6f726769096d65646961747970655369136170706c69636174696f6e2f6c642b6a736f6e6904646174617b690840636f6e74657874536912687474703a2f2f736368656d612e6f72672f690540747970655369105363686f6c61726c7941727469636c656908656e636f64696e675b7b245323690369054074797065690b4d656469614f626a656374690a636f6e74656e7455726c694d687474703a2f2f706466732e73656d616e7469637363686f6c61722e6f72672f656666642f6339626362373965613737633164353736393034376530646131316135383231326236302e706466690e656e636f64696e67466f726d6174690f6170706c69636174696f6e2f7064665d690567656e72655369067265706f7274690a6964656e7469666965725b247b236902245323690369054074797065690d50726f706572747956616c7565690a70726f706572747949446903444f49690576616c7565691231302e32313233362f616461343634373236245323690369054074797065690d50726f706572747956616c7565690a70726f70657274794944690449534343690576616c7565693743434e32773450484e4231574c2d4354436b59506a4673336b47382d4344377a363947474e46374c422d4352566a41463433743961453469046e616d65536950412047656e6572616c697a656420417070726f61636820746f20536f696c20537472656e6774682050726564696374696f6e2057697468204d616368696e65204c6561726e696e67204d6574686f647369097075626c69736865727b6905407479706553690c4f7267616e697a6174696f6e69046e616d65536924446566656e736520546563686e6963616c20496e666f726d6174696f6e2043656e7465727d690d646174655075626c697368656453690a323030362d30372d30316906617574686f725b7b69054074797065536906506572736f6e69046e616d6553690e5065746572204d2e2053656d656e7d5d7d7d5d7d
"type": nulldata
},
"items": [
{'type': 'stream', 'name': 'iscc', 'createtxid': '9dc120f0f3ba1bf3cc53010a0af74f164961f37595bdd9a89b5064e60304c070', 'streamref': '22580-300-49565', 'publishers': ['2QTa5N4aeSrCB2MLoPdPF4AsTjstJgcLTnd'], 'keys': ['CCN2w4PHNB1WL', 'CTCkYPjFs3kG8', 'CD7z69GGNF7LB', 'CRVjAF43t9aE4'], 'offchain': False, 'data': {'json': {'title': 'a generalized approach to soil strength prediction with machine learning methods', 'tophash': '87e50c51450f47395a42739863c22f13c610138de38c8087a5b998111f5489e2', 'meta': [{'schema': 'schema.org', 'mediatype': 'application/ld+json', 'data': {'@context': 'http://schema.org/', '@type': 'ScholarlyArticle', 'encoding': [{'@type': 'MediaObject', 'contentUrl': 'http://pdfs.semanticscholar.org/effd/c9bcb79ea77c1d5769047e0da11a58212b60.pdf', 'encodingFormat': 'application/pdf'}], 'genre': 'report', 'identifier': [{'@type': 'PropertyValue', 'propertyID': 'DOI', 'value': '10.21236/ada464726'}, {'@type': 'PropertyValue', 'propertyID': 'ISCC', 'value': 'CCN2w4PHNB1WL-CTCkYPjFs3kG8-CD7z69GGNF7LB-CRVjAF43t9aE4'}], 'name': 'A Generalized Approach to Soil Strength Prediction With Machine Learning Methods', 'publisher': {'@type': 'Organization', 'name': 'Defense Technical Information Center'}, 'datePublished': '2006-07-01', 'author': [{'@type': 'Person', 'name': 'Peter M. Semen'}]}}]}}}
]
},
{
"value": 49.48861097
"n": 1
"scriptPubKey": {
"asm": OP_DUP OP_HASH160 70f3924b82ad8ba9ca4b38ee85a83bd99c142f9f OP_EQUALVERIFY OP_CHECKSIG
"hex": 76a91470f3924b82ad8ba9ca4b38ee85a83bd99c142f9f88ac
"reqSigs": 1
"type": pubkeyhash
"addresses": ['2QTa5N4aeSrCB2MLoPdPF4AsTjstJgcLTnd']
}
}
]
}